如需转载,请根据 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 许可,附上本文作者及链接。
本文作者: Alice
作者昵称: 沉。
本文链接: http://example.com/2020/11/04/%E6%93%8D%E4%BD%9C%E7%B3%BB%E7%BB%9F%EF%BC%88%E4%BA%8C%EF%BC%89/
三、内存
内存可存放数据。程序执行前需要先放到内存中才能被CPU处理——缓和CPU与硬盘之间的速度矛盾
3.1、内存的基本概念
内存地址从0 开始,每个 地址对应一 个存储单元
内存中也有一个一个的“小房间”,每个小房间就是一个“存储单元”
如果计算机“按字节编址”, 则每个存储单元大小为 1字节,即 1B,即 8个二进制位
如果字长为16位的计算机 “按字编址”,则每个存 储单元大小为 1个字;每个字的大小为 16 个二进制位
指令的工作原理:
装入指令的三种方式:
绝对装入:绝对装入:在编译时,如果知道程序将放到内存中的哪个位置,编译程序将产生绝对地址的目标代码。装入程序按照装入模块中的地址,将程序和数据装入内存。
绝对装入只适用于单道程序环境。
可重定位装入
动态运行时装入
动态重定位:又称动态运行时装入。编译、链接后的装入模块的地址都是从0开始的。装入程序把装 入模块装入内存后,并不会立即把逻辑地址转换为物理地址,而是把地址转换推迟到程序真正要执行时才进行。因此装入内存后所有的地址依然是逻辑地址。这种方式需要一个重定位寄存器的支持。
从写程序到程序运行的过程:
- 编译:由编译程序将用户源代码编译成若干个目标模块(编译就是把高级语言翻译为机器语言)
- 链接:由链接程序将编译后形成的一组目标模块,以及所需库函数链接在一起,形成一个完整的装入模块
- 装入(装载):由装入程序将装入模块装入内存运行
链接的三种方式:
静态链接:在程序运行之前, 先将各目标模块及它们所需 的库函数连接成一个完整的可执行文件(装入模块),之后不再拆开。
装入时动态链接:将各目标模块装入内存时,边装入边链接的链接方式。
运行时动态链接:在程序执 行中需要该目标模块时,才对它进行链接。其优点是便于修改和更新,便于实现对目标模块的共享。
3.2、内存管理
地址转换:
操作系统负责内存空间的分配与回收
操作系统需要提供某种技术从逻辑上对内存空间进行扩充
操作系统需要提供地址转换功能,负责程序的逻辑地址与物理地
址的转换
为了使编程更方便,程序员写程序时应该只需要关注指令、数据的逻辑地址。而逻辑地址到物理地址 的转换(这个过程称为地址重定位)应该由操作系统负责,这样就保证了程序员写程序时不需要关注物理内存的实际情况。
操作系统需要提供内存保护功能。保证各进程在各自存储空间内 运行,互不干扰
内存保护:
- 方法一:在CPU中设置一对上、下限寄存器,存放 进程的上、下限地址。进程的指令要访问某个地址时,CPU检查是否越界
- 方法二:采用重定位寄存器(又称基址寄存器)和界 地址寄存器(又称限长寄存器)进行越界检查。重定 位寄存器中存放的是进程的起始物理地址。界地址寄存器中存放的是进程的最大逻辑地址。
3.2、覆盖与交换
3.2.1、覆盖技术:
覆盖技术的思想:将程序分为多个段(多个模块)。 常用的段常驻内存,不常用的段在需要时调入内存。内存中分为一个“固定区”和若干个“覆盖区”。
需要常驻内存的段放在“固定区”中,调入后就不再 调出(除非运行结束) 不常用的段放在“覆盖区”,需要用到时调入内存,用不到时调出内存
3.2.2、交换技术
交换(对换)技术的设计思想:内存空间紧张时,系统将内存中某些进程暂时换出外存,把外存中某些已具备运行条件的进程换入内存(进程在内存与磁盘间动态调度)
中级调度(内存调度),就是要决定将哪个处于挂起状态的进程重新调入内存。
暂时换出外存等待的进程状态为挂起状态(挂起态,suspend)
挂起态又可以进一步细分为就绪挂起、阻塞挂起两种状态
小结:
3.3、内存空间的分配与回收
3.3.1、分配方式
连续分配:指为用户进程分配的必须是一个连续的内存空间。
单一连续分配:
在单一连续分配方式中,内存被分为系统区和用户区。 系统区通常位于内存的低地址部分,用于存放操作系统
相关数据;用户区用于存放用户进程相关数据。 内存中只能有一道用户程序,用户程序独占整个用户区 空间。
优点:实现简单;无外部碎片;可以采用覆盖技术扩充
内存;不一定需要采取内存保护(eg:早期的 PC 操作 系统 MS-DOS)。
缺点:只能用于单用户、单任务的操作系统中;有内部碎片;存储器利用率极低。
固定分区分配:
20世纪60年代出现了支持多道程序的系统,为了能在内 存中装入多道程序,且这些程序之间又不会相互干扰, 于是将整个用户空间划分为若干个固定大小的分区,在 每个分区中只装入一道作业,这样就形成了最早的、最 简单的一种可运行多道程序的内存管理方式。
分区大小相等:缺乏灵活性,但是很适合用于用一台计 算机控制多个相同对象的场合(比如:钢铁厂有n个相 同的炼钢炉,就可把内存分为n个大小相等的区域存放n个炼钢炉控制程序)
分区大小不等:增加了灵活性,可以满足不同大小的进 程需求。根据常在系统中运行的作业大小情况进行划分(比如:划分多个小分区、适量中等分区、少量大分区)
动态分区分配:
- 动态分区分配又称为可变分区分配。这种分配方式不会预先划分内存分区,而是在进程装入内存时, 根据进程的大小动态地建立分区,并使分区的大小正好适合进程的需要。因此系统分区的大小和数 目是可变的。
- 两种常用的数据结构:
- 空闲分区表:每 个空闲分区对应 一个表项。表项 中包含分区号、 分区大小、分区起始地址等信息
- 空闲分区链:每个分区的起始部分和末尾部分分别设置前向指针和后向指针。起始部分处还可记录分区大小等信息
小结:
3.3.2、动态分区分配算法
首次适应算法:
算法思想:每次都从低地址开始查找,找到第一个能满足大小的空闲分区。
如何实现:空闲分区以地址递增的次序排列。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
最佳适应算法:
- 算法思想:由于动态分区分配是一种连续分配方式,为各进程分配的空间必须是连续的一整片区 域。因此为了保证当“大进程”到来时能有连续的大片空间,可以尽可能多地留下大片的空闲区, 即,优先使用更小的空闲区。
- 如何实现:空闲分区按容量递增次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
- 缺点:每次都选最小的分区进行分配,会留下越来越多的、很小的、难以利用的内存块。因此这种方法会产生很多的外部碎片。
最坏适应算法:
又称 最大适应算法(Largest Fit)
- 算法思想:为了解决最佳适应算法的问题——即留下太多难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。
- 如何实现:空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
缺点:每次都选最大的分区进行分配,虽然可以让分配后留下的空闲区更大,更可用,但是这种方式会导致较大的连续空闲区被迅速用完。如果之后有“大进程”到达,就没有内存分区可用了。
临近适应算法:
- 算法思想:首次适应算法每次都从链头开始查找的。这可能会导致低地址部分出现很多小的空闲 分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。如果每次都从上次查 找结束的位置开始检索,就能解决上述问题。
- 如何实现:空闲分区以地址递增的顺序排列(可排成一个循环链表)。每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。
四种算法的比较:
3.3.3、基本分页存储管理
连续分配:为用户进程分配的必须是一个连续的内存空间。
非连续分配:为用户进程分配的可以是一些分散的内存空间。
分页存储的概念:
为了能知道进程的每个页面在内存中存放的位置,操作系统要为每个进程建立一张页表。
- 一个进程对应一张页表
- 进程的每个页面对应一个页表项
- 每个页表项由“页号”和“块号”组成
- 页表记录进程页面和实际存放的内存块之间的映射关系
- 每个页表项的长度是相同的
页表中的页号可以是隐含的,即页号不占用存储空间
确定逻辑地址对应的页号,页内偏移量
在计算机内部,地址是用二进制表示的, 如果页面大小 刚好是 2 的整数幂,则计 算机硬件可以很快速的把逻辑地址拆分成(页号,页内偏移量)
根据页号可以查询页表,而页表中记录的 只是内存块号,而不是内存块的起始地址! J 号内存块的起始地址 = J * 内存块大小
结论:如果页面大小刚好是2 的整数幂,则只需把页表中记 录的物理块号拼接上页内偏移量就能得到对应的物理地址
逻辑地址结构:
小结:
3.3.4、基本地址变换机构
基本地址变换机构可以借助进程的页表将逻辑地址转换为物理地址。
通常会在系统中设置一个页表寄存器(PTR),存放页表在内存中的起始地址F 和页表长度M。
进程未执行时,页表的始址 和 页表长度 放在进程控制块(PCB)中,当进程被调度时,操作系统内核会把它们放到页表寄存器中。
注意:页面大小是2的整数幂设页面大小为L,逻辑地址A到物理地址E的变换过程如下:
逻辑地址A到物理地址E的变换过程如下:
计算页号 P 和页内偏移量W( 如果用十进制数手算,则 P=A/L,W=A%L;但是在计算机实际 运行时,逻辑地址结构是固定不变的,因此计算机硬件可以更快地得到二进制表示的页号、页 内偏移量)
比较页号P 和页表长度M,若 P≥M,则产生越界中断,否则继续执行。(注意:页号是从0开 始的,而页表长度至少是1,因此 P=M 时也会越界)
页表中页号P对应的页表项地址 = 页表起始地址F + 页号P *页表项长度,取出该页表项内容b, 即为内存块号。(注意区分页表项长度、页表长度、页面大小的区别。页表长度指的是这个页 表中总共有几个页表项,即总共有几个页;页表项长度指的是每个页表项占多大的存储空间; 页面大小指的是一个页面占多大的存储空间)
计算 E = b * L + W,用得到的物理地址E 去访存。(如果内存块号、页面偏移量是用二进制表 示的,那么把二者拼接起来就是最终的物理地址了)
理论上,页表项长度为 3B 即可表示内存块号的范围,但是,为了方便页表的查询,常常会让一个页表项占更多的字节,使得每个页面恰好可以装得下整数个页表项。
小结:
3.3.5、具有块表的地址变换机构
什么是快表?
快表,又称联想寄存器(TLB, translation lookaside buffer ),是一种访问速度比内存快很多的 高速缓存(TLB不是内存!),用来存放最近访问的页表项的副本,可以加速地址变换的速度。 与此对应,内存中的页表常称为慢表。
CPU给出逻辑地址,由某个硬件算得页号、页内偏移量,将页号与快表中的所有页号进行比较。
如果找到匹配的页号,说明要访问的页表项在快表中有副本,则直接从中取出该页对应的内存块 号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表命中,则访问某个逻辑地址仅需一次访存即可。
如果没有找到匹配的页号,则需要访问内存中的页表,找到对应页表项,得到页面存放的内存块 号,再将内存块号与页内偏移量拼接形成物理地址,最后,访问该物理地址对应的内存单元。因此,若快表未命中,则访问某个逻辑地址需要两次访存(注意:在找到页表项后,应同时将其存入快表,以便后面可能的再次访问。但若快表已满,则必须按照一定的算法对旧的页表项进行替换)由于查询快表的速度比查询页表的速度快很多,因此只要快表命中,就可以节省很多时间。
因为局部性原理,一般来说快表的命中率可以达到 90% 以上。
局部性原理:
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很 有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再 次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的 存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放 的)
小结:
3.4、两级页表
单级页表存在的问题:
根据局部性原理可知,很多时候,进程在一段时间内只需要访问某几个页面 就可以正常运行了。因此没有必要让整个页表都常驻内存。
问题一:页表必须连续存放,因此当页表很大时,需要占用很多个连续的页框。
问题二:没有必要让整个页表常驻内存,因为进程在一段时间内可能只需要访问某几个特定的页面。
可以在需要访问页面时才把页面调入内存(虚拟存储技术)。可以在页表项中增加一个标志位,用于表示该页面是否已经调入内存
需要注意的细节:
小结:
3.5、基本分段存储管理
进程的地址空间:按照程序自身的逻辑关系划分为若干个段,每个段都有一个段名(在低级语言 中,程序员使用段名来编程),每段从0开始编址
内存分配规则:以段为单位进行分配,每个段在内存中占据连续空间,但各段之间可以不相邻。
段表:程序分多个段,各段离散地装入内存,为了保证程序能正常运行,就必须能从物理内存中 找到各个逻辑段的存放位置。为此,需为每个进程建立一张段映射表,简称“段表”。
地址变换:
分页,分段的对比:
页是信息的物理单位。分页的主要目的是为了实现离散分配,提高内存利用率。分页仅仅是系统管理上的需要,完全是系统行为,对用户是不可见的。
段是信息的逻辑单位。分段的主要目的是更好地满足用户需求。一个段通常包含着一组属于一个逻辑模块的信息。分段对用户是可见的,用户编程时需要显式地给出段名。
页的大小固定且由系统决定。段的长度却不固定,决定于用户编写的程序。
分页的用户进程地址空间是一维的,程序员只需给出一个记忆符即可表示一个地址。
分段的用户进程地址空间是二维的,程序员在标识一个地址时,既要给出段名,也要给出段内地址。
分段比分页更容易实现信息的共享和保护。
不能被修改的代码称为纯代码或可重入代码(不属于临界资源),这样的代码是可以共享的。可修 改的代码是不能共享的(比如,有一个代码段中有很多变量,各进程并发地同时访问可能造成数据不一致)
小结:
3.6、段页式管理方式
分段,分页的优缺点分析:
分段+分页=段页式管理:
段号的位数决定了每个进程最多可以分几个段
页号位数决定了每个段最大有多少页
页内偏移量决定了页面大小、内存块大小是多少
“分段”对用户是可见的,程序员编程时需要显式地给出段 号、段内地址。而将各段“分页”对用户是不可见的。系统 会根据段内地址自动划分页号 和页内偏移量。因此段页式管理的地址结构是二维的。
每个段对应一个段表项,每个段表项由段号、页表长度、页表存放块号(页表起始地址)组成。每个段表项长度相等,段号是隐含的。
每个页面对应一个页表项,每个页表项由页号、页面存放的内存块号组成。每个页表项长度相等,页号是隐含的。
小结:
3.7、虚拟内存
3.7.1、虚拟内存的基本概念
传统存储管理方式的特征、缺点:
一次性:作业必须一次性全部装入内存后才能开始运行。这会造成两个问题:①作业很大时,不能全 部装入内存,导致大作业无法运行;②当大量作业要求运行时,由于内存无法容纳所有作业,因此只有少量作业能运行,导致多道程序并发度下降。
驻留性:一旦作业被装入内存,就会一直驻留在内存中,直至作业运行结束。事实上,在一个时间段内,只需要访问作业的一小部分数据即可正常运行,这就导致了内存中会驻留大量的、暂时用不到的数据,浪费了宝贵的内存资源。
局部性原理:
时间局部性:如果执行了程序中的某条指令,那么不久后这条指令很有可能再次执行;如果某个数据被访问过,不久之后该数据很可能再次被访问。(因为程序中存在大量的循环)
空间局部性:一旦程序访问了某个存储单元,在不久之后,其附近的存储单元也很有可能被访问。(因为很多数据在内存中都是连续存放的,并且程序的指令也是顺序地在内存中存放的)
虚拟内存的定义和特征:
基于局部性原理,在程序装入时,可以将程序中很快会用到的部分装入内存,暂时用不到的部分留在外存, 就可以让程序开始执行。
在程序执行过程中,当所访问的信息不在内存时,由 操作系统负责将所需信息从外存调入内存,然后继续 执行程序。 若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。
在操作系统的管理下,在用户看来似乎有一个比实际内存大得多的内存,这就是虚拟内存
操作系统虚拟性 的一个体现,实际的物理内存大 小没有变,只是在逻辑上进行了 扩充。
易混知识点:
虚拟内存的最大容量是由计算机的地址结构(CPU寻址范围)确定的 虚拟内存的实际容量 = min(内存和外存容量之和,CPU寻址范围) 如:某计算机地址结构为32位,按字节编址,内存大小为512MB,外存大小为2GB。 则虚拟内存的最大容量为 232 B = 4GB
虚拟内存的实际容量 = min (232B, 512MB+2GB) = 2GB+512MB
虚拟内存有一下三个主要特征:
多次性:无需在作业运行时一次性全部装入内存,而是允许被分成多次调入内存。
对换性:在作业运行时无需一直常驻内存,而是允许在作业运行过程中,将作业换入、换出。
虚拟性:从逻辑上扩充了内存的容量,使用户看到的内存容量,远大于实际的容量。
如何实现虚拟内存技术:
- 虚拟内存技术,允许一个作业分多次调入内存。如果采用连续分配方式,会不方便实现。因此,虚拟内存的实现需要建立在离散分配的内存管理方式基础上。
小结:
3.7.2、请求分页管理方式
请求分页存储管理与基本分页存储管理的主要区别:在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然后继续执行程序。
若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。
页表机制:
缺页中断机构:
缺页中断是因为当前执行的指令想要访问的目标页面未调入内存而产生的,因此属于内中断 一条指令在执行期间,可能产生多次缺页中断。(如:copy A to B,即将逻辑地址A中的数据复制到 逻辑地址B,而A、B属于不同的页面,则有可能产生两次中断)
地址变换机构:
补充:
小结:
3.8、页面置换算法
请求分页存储管理与基本分页存储管理的主要区别:
在程序执行过程中,当所访问的信息不在内存时,由操作系统负责将所需信息从外存调入内存,然 后继续执行程序。
若内存空间不够,由操作系统负责将内存中暂时用不到的信息换出到外存。
3.8.1、最佳置换算法
最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被 访问的页面,这样可以保证最低的缺页率
最佳置换算法(OPT,Optimal):每次选择淘汰的页面将是以后永不使用,或者在最长时间内不再被 访问的页面,这样可以保证最低的缺页率。
最佳置换算法可以保证最低的缺页率,但实际上,只有在进程执行的过程中才能知道接下来会访问到 的是哪个页面。操作系统无法ᨀ前预判页面访问序列。因此,最佳置换算法是无法实现的。
3.8.2、先进先出置换算法FIFO
先进先出置换算法(FIFO):每次选择淘汰的页面是最早进入内存的页面
实现方法:把调入内存的页面根据调入的先后顺序排成一个队列,需要换出页面时选择队头页面即可。
队列的最大长度取决于系统为进程分配了多少个内存块。
Belady 异常——当为进程分配的物理块数增大时,缺页次数不减反增的异常现象。
只有 FIFO 算法会产生 Belady 异常。另外,FIFO算法虽然实现简单,但是该算法与进程实际运行时的 规律不适应,因为先进入的页面也有可能最经常被访问。因此,算法性能差
3.8.3、最近最久未使用置换算法(LRU)
最近最久未使用置换算法(LRU,least recently used):每次淘汰的页面是最近最久未使用的页面
实现方法:赋予每个页面对应的页表项中,用访问字段记录该页面自上次被访问以来所经历的时间t。
当需要淘汰一个页面时,选择现有页面中 t 值最大的,即最近最久未使用的页面。
该算法的实现需要专门的硬件支持,虽然算法性能好, 但是实现困难,开销大
例:假设系统为某进程分配了四个内存块,并考虑到有以下页面号引用串: 1, 8, 1, 7, 8, 2, 7, 2, 1, 8, 3, 8, 2, 1, 3, 1, 7, 1, 3, 7
3.8.4、时钟置换算法(CLOCK)
最佳置换算法性能最好,但无法实现;先进先出置换算法实现简单,但算法性能差;最近最久未使用
置换算法性能好,是最接近OPT算法性能的,但是实现起来需要专门的硬件支持,算法开销大。
时钟置换算法是一种性能和开销较均衡的算法,又称CLOCK算法,或最近未用算法(NRU,Not
Recently Used)
简单的CLOCK 算法实现方法:为每个页面设置一个访问位,再将内存中的页面都通过链接指针链接成 一个循环队列。当某页被访问时,其访问位置为1。当需要淘汰一个页面时,只需检查页的访问位。 如果是0,就选择该页换出;如果是1,则将它置为0,暂不换出,继续检查下一个页面,若第一轮扫描中所有页面都是1,则将这些页面的访问位依次置为0后,再进行第二轮扫描(第二轮扫描中一定会有访问位为0的页面,因此简单的CLOCK 算法选择一个淘汰页面最多会经过两轮扫描)
改型后的时钟置换算法:
四种算法比较:
3.9、页面分配策略
驻留集:指请求分页存储管理中给进程分配的物理块的集合。 在采用了虚拟存储技术的系统中,驻留集大小一般小于进程的总大小。 若驻留集太小,会导致缺页频繁,系统要花大量的时间来处理缺页,实于进程推进的时间很少; 驻留集太大,又会导致多道程序并发度下降,资源利用率降低。所以应该选择一个合适的驻留集大小。
固定分配:操作系统为每个进程分配一组固定数目的物理块,在进程运行期间不再改变。即,驻留集大小不变
可变分配:先为每个进程分配一定数目的物理块,在进程运行期间,可根据情况做适当的增加或减少。 即,驻留集大小可变
局部置换:发生缺页时只能选进程自己的物理块进行置换。
全局置换:可以将操作系统保留的空闲物理块分配给缺页进程,也可以将别的进程持有的物理块置换到外存,再分配给缺页进程。
固定分配局部置换:系统为每个进程分配一定数量的物理块,在整个运行期间都不改变。若进程在运行中发生缺页,则只能从该进程在内存中的页面中选出一页换出,然后再调入需要的页面。这种策略的缺点是:很难在刚开始就确定应为每个进程分配多少个物理块才算合理。(采用这种策略的系统可 以根据进程大小、优先级、或是根据程序员给出的参数来确定为一个进程分配的内存块数)
可变分配全局置换:刚开始会为每个进程分配一定数量的物理块。操作系统会保持一个空闲物理块队列。当某进程发生缺页时,从空闲物理块中取出一块分配给该进程;若已无空闲物理块,则可选择一 个未锁定的页面换出外存,再将该物理块分配给缺页的进程。采用这种策略时,只要某进程发生缺页,都将获得新的物理块,仅当空闲物理块用完时,系统才选择一个未锁定的页面调出。被选择调出的页可能是系统中任何一个进程中的页,因此这个被选中的进程拥有的物理块会减少,缺页率会增加。
可变分配局部置换:刚开始会为每个进程分配一定数量的物理块。当某进程发生缺页时,只允许从该 进程自己的物理块中选出一个进行换出外存。如果进程在运行中频繁地缺页,系统会为该进程多分配 几个物理块,直至该进程缺页率趋势适当程度;反之,如果进程在运行中缺页率特别低,则可适当减 少分配给该进程的物理块。
可变分配全局置换:只要缺页就给分配新物理块
可变分配局部置换:要根据发生缺页的频率来动态地增加或减少进程的物理块
何时调入页面?
预调页策略:根据局部性原理,一次调入若干个相邻的页面可能比一次调入一个页面更高效。但如 果提前调入的页面中大多数都没被访问过,则又是低效的。因此可以预测不久之后可能访问到的页 面,将它们预先调入内存,但目前预测成功率只有50%左右。故这种策略主要用于进程的首次调入,程序员指出应该先调入哪些部分。
请求调页策略:进程在运行期间发现缺页时才将所缺页面调入内存。由这种策略调入的页面一定会被访问到,但由于每次只能调入一页,而每次调页都要磁盘I/O操作,因此I/O开销较大。
从何处调入页面?
抖动(颠簸)现象 :
刚刚换出的页面马上又要换入内存,刚刚换入的页面马上又要换出外存,这种频繁的页面调度行为称 为抖动,或颠簸。产生抖动的主要原因是进程频繁访问的页面数目高于可用的物理块数(分配给进程 的物理块不够)
为进程分配的物理块太少,会使进 程发生抖动现象。为进程分配的物 理块太多,又会降低系统整体的并 发度,降低某些资源的利用率
为了研究为应该为每个进程分配多 少个物理块,Denning 提出了进程 “工作集”的概念
工作集:
驻留集:指请求分页存储管理中给进程分配的内存块的集合。
工作集:指在某段时间间隔里,进程实际访问页面的集合。
小结:
-------------本文结束感谢您的阅读-------------
本文链接: http://example.com/2020/11/04/%E6%93%8D%E4%BD%9C%E7%B3%BB%E7%BB%9F%EF%BC%88%E4%BA%8C%EF%BC%89/
版权声明: 本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。转载请注明出处!